

User Manual

Smart Communication Unit SCU1100

Contents

1	About This Manual	1
	1.1 Preface	1
	1.2 Target Group	1
	1.3 Manual Description	1
	1.4 Symbol Explanation	1
	1.5 Expression Explanation	1
2	System Introduction	2
	2.1 Brief Introduction	2
	2.2 Main Features	2
	2.3 System Requirements	2
3	Introduction to Ports	3
	3.1 Ethernet Port Wiring	3
	3.2 RS485 Port Wiring	4
	3.3 DI Input Dry Contact Wiring	5
	3.4 DO Output Dry Contact Wiring	6
	3.5 PT100 Port Wiring	7
	3.6 Analog Port Wiring	8
	3.7 24Vdc Power Port Wiring	9
4	Login	11
	4.1 Login	11
	4.1.1 Overview	11
	4.1.2 Preparation before Login	11
	4.1.3 Login Method	11
	4.2 Modify the Password	12
	4.3 Setting the Language	12
	4.4 Logout	12
5	Interface Description	13
	5.1 Homepage	13
	5.2 WEB Menu	13
6	Overview	15

	6.1 Checking the General Information	.15
	6.2 Checking the Real-time Status.	.15
7 I	Device Monitoring	.16
8 I	Device Maintenance	.17
	8.1 Device List	.17
	8.2 Firmware Update	.17
	8.3 Fault Recorder	.17
9 \$	Smart Diagnosis	.19
	9.1 String Diagnosis	.19
	9.2 Fault Diagnosis	.19
	9.2.1 Function Introduction	.19
	9.2.2 Access to User Interface	.19
	9.2.3 Diagnostic Process	.20
	9.2.4 Fault Monitoring	.20
	9.2.5 Branch Number Setting	.24
	9.2.6 Advanced Settings	.25
10	History Data	.27
	10.1 Operation Log	.27
	10.2 Status Records	.27
	10.3 Parameter log	.27
	10.4 History Curve	.28
11	System	.29
	11.1 Run Information	.29
	11.2 System Maintenance	.29
	11.3 Remote Maintenance	.30
	11.4 Message Export	.30
	11.5 System Time	.31
	11.6 Transfer Configuration	.31
	11.6.1 IEC104	.32
	11.6.2 MODBUS	.33
	11.6.3 GOOSE	.33
	11.7 Template Management	.34
	11.8 File Management	.34
	11.9 Port Parameter	.34
	11.9.1 RS485	.34
	11.9.2 FveW485	.35

	11.9.2.1 EyeW485-H Configuration	36
	11.9.2.2 EyeW485 Configuration	36
	11.9.2.3 Operation Instructions	36
	11.9.3 Ethernet	37
	11.9.4 WLAN	37
	11.9.5 AI	38
	11.9.6 DI	38
12	About	39
13	Appendix	40
	13.1 Copyright	40
	13.2 Contact Information	40

1 About This Manual

1.1 Preface

This manual describes in detail the SCU intelligent communication gateway in the form of overviews, charts, operation steps, and examples, to facilitate better understanding and flexible, efficient use of the system.

It will be referred to as "SCU" for short hereinafter unless otherwise specified.

With continuous software update, the interface and functions of the software you are using may differ from the example pictures provided in this manual. If so, please refer to the latest software version. If you have any questions, please contact Sungrow Power Supply Co. Ltd.

1.2 Target Group

This manual is intended for the following target groups:

- · O&M personnel
- · System administrators
- · Technical engineers

1.3 Manual Description

This manual provides brief description by using the standard SCU interfaces as examples. For specific activated functions, refer to the technical agreements or the contract.

1.4 Symbol Explanation

"NOTE" indicates additional information, emphasized contents, or tips helping you solve problems or save time.

1.5 Expression Explanation

Туре	Expression example
Select a certain menu	Select "Monitoring" on the navigation bar
Select multiple menus	Select "Monitoring -> Device operation"
Click a certain button	Click the button [Confirm]

2 System Introduction

2.1 Brief Introduction

SCU is a data collection and protocol conversion device that can collect data from inverters, combiner boxes and other equipment in PV systems. Users can view the collected information by accessing the server through PC.

2.2 Main Features

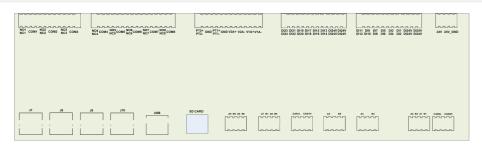
The SCU has the following features:

Smart and Flexible

- Support RS485, CAN communication
- · Support remote upgrade and maintenance
- Support connection to both iSolarCloud and the third-party monitoring system

Simple and Efficient

- Embedded Web operation interface, support inverter parameter setting and remote
- · Support configuration of multiple forwarding protocols, convenient for onsite debugging


Safe and Reliable

- More stable running as the core system service runs in the linux operating system
- Strict control procedure, complying with power system safety standards

2.3 System Requirements

Item	Requirement
Browser	CHROME 32bits, version 66 or later

3 Introduction to Ports

Port	Port definition	Remarks
J7 (NET2) 、J10(NET1)、	Ethernet port	4 way
J8 (Goose1) 、J9(Goose2)	Goose port	4-way
USB	USB port	Not open yet
A1B1~A3B3	DC405 port	7 wov
A6B6~A9B9	RS485 port	7-way
CAN1H, CAN1L	CAN port	Not open yet
CAN2H, CAN2L, GND	CAN port	Not open yet
DI1~DI24	Dry contact input port	24-way
DI24V	Dry contact input port	24-way
NC1 NO1 COM1 ~ NC8 NO8	Dry contact output port	8-way, output signal
COM8	Dry contact output port	250Vac/1A or 30V/1A
PT1+ PT1-	PT100 temperature detection	2-way
PT2+ PT2-	port	
V1A+ V1A-	Analog input port	2-way, 0~5Vdc,
V2A+ V2A-	Analog Input port	4~20mA
24V, 24V-GND	24Vdc power port	24Vdc,I≤2.0A
SD	SD card slot	8G, not open yet

3.1 Ethernet Port Wiring

Introduction

Port	Function
J7(NET2)	For internal debugging only
J8(Goose1)	Exclusively for Goose
J8(Goose2)	Exclusively for Goose
J10(NET1)	Connect to external devices such as Ethernet switch.

Wiring Requirements

CAT-5e or aboove cable is recommended.

3 Introduction to Ports User Manual

Wiring Method

Use CAT-5e or aboove cable with one end connected to external device and the other end connected to the "NET1" or "NET2" port of the SCU.

Item	Description
Modbus-TCP	Click"System- > "Transfer Configuration"- > "Modbus"-
forwarding	> "SERVER", supports up to 15 port configurations.
IEC104 forwarding	Click"System- > "Transfer Configuration"- > "IEC104",supports up
IEC 104 lorwarding	to 15 port configurations.

3.2 RS485 Port Wiring

Introduction

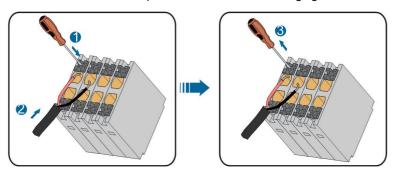
The SCU supports 7-way RS485 terminal connection to equipment such as box transformer measurement and control equipment, electricity meter, PV combiner box and environmental monitor.

Port mark	Function
An	RS485A, RS485 differential signal+
Bn	RS485B, RS485 differential signal-

^{*} n=3 or 6~9.

Cable Requirements

- 0.75mm²~1.5mm² twisted pair shielded wire is recommended for connection.
- The RS485 communication distance is less than 1200m.
- A single RS485 communication port can support the access of 32 devices.
- A single RS485 communication port does not allow different types of equipment to be connected.


Wiring Method

- Step 1 Lead the RS485 cable outgoing from external equipment to the wiring area of the SCU.
- **Step 2** Use wire strippers to strip the protective layer and shielded layer of the cable to expose the copper core of the wire.

User Manual 3 Introduction to Ports

Step 3 Connect the cable of which the insulation layer has been stripped to the either the SCU's"A1B1~A3B3"or"A5B5~A9B9"port as shown in the following figure.

^{*}for illustration only.

- - End

3.3 DI Input Dry Contact Wiring

Introduction

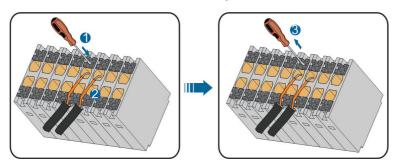
The SCU supports multi-input dry contact connection to the transformer or switchgear signal node.

Port	Function
DI1~DI24	Input dry contact terminals 1~24
DI24V	Total 8 input dry contact 24V terminal

^{*} DI1~ DI5 are for internal use by the SUNGROW R&D team only and do not support configuration by users.

Wiring Requirements

0.75mm²~1.5mm²wire is recommended.


Wiring Method

- **Step 1** Connect the DI input dry contact cable and 24V cable outgoing from the transformer to the wiring area of the SCU.
- **Step 2** Use a wire stripper to strip the protective layer and shielded layer of the cable to expose the copper core of the wire.

3 Introduction to Ports User Manual

Step 3 Connect the DI cable to either the SCU's "DI1~DI21" port: Connect 24V cable to "DI24V" port.

figure 3-1 Wiring method (take DI20 port wiring for example)

--End

3.4 DO Output Dry Contact Wiring

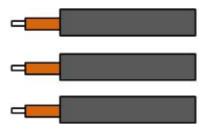
Introduction

The SCU supports 8-way output dry contact connection to the transformer or switchgear signal node.

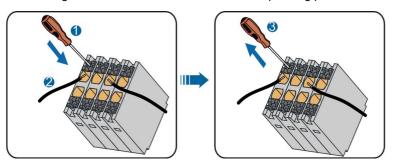
Port	Function
NC1	Output port 1, NC
N01	Output port 1, NO
COM1	Output port 1, COM
NC2	Output port 2, NC
NO2	Output port 2, NO
COM2	Output port 2, COM
NC3	Output port 3, NC
N03	Output port 3, NO
COM3	Output port 3, COM
NC4	Output port 4, NC
N04	Output port 4, NO
COM4	Output port 4, COM
NC5	Output port 5, NC
N05	Output port 5, NO
COM5	Output port 5, COM
NC6	Output port 6, NC
N06	Output port 6, NO
COM6	Output port 6, COM
NC7	Output port 7, NC
N07	Output port 7, NO
COM7	Output port 7, COM
NC8	Output port 8, NC

User Manual 3 Introduction to Ports

Port	Function
N08	Output port 8, NO
COM8	Output port 8, COM


Wiring Requirements

0.75mm²~1.5mm²wire is recommended.


Wiring Method

Step 1 Connect the output dry contact (NO, NC, COM) cable outgoing from the transformer to the wiring area of the SCU.

Step 2 Use a wire stripper to strip the protective layer and shielded layer of the cable to expose the copper core of the wire.

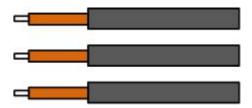
Step 3 Connect cables outing from NO, NC and COMs to the corresponding ports of the SCU.

- - End

3.5 PT100 Port Wiring

Introduction

The SCU has two PT100 sampling ports, which are used for transformer oil temperature sampling and copper busbar temperature sampling respectively.


Wiring Requirements

Recommended cable specifications:0.75mm²~1.5mm².

Wiring Method

3 Introduction to Ports User Manual

Step 1 Lead the sampling signal line to the wiring area of the SCU.

Step 2 When connecting a two-wire cable, connect the PT + cable to the "PT +" port; connect the PT- cable to the "PT-" port. (**Note**: "PT-" port and "GND" port are short-circuited)

When connecting a three-wire cable, PT+ cable connects to "PT+" port; PT- cable connects to "PT-" port; ground cable Connect to the "GND" port.

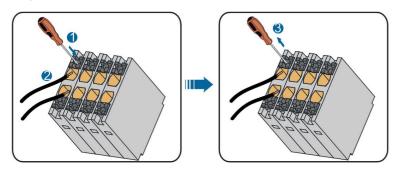


figure 3-2 Two-wire cable connection

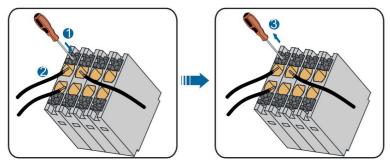


figure 3-3 Three-wire cable connection

- - End

3.6 Analog Port Wiring

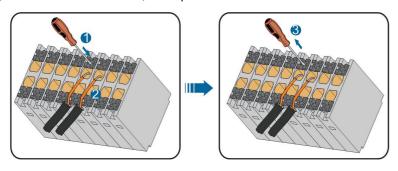
Introduction

The SCU offers two analog input ports.

Wiring Requirements

0.75mm²~1.5mm² is recommended.

Wiring Method


Step 1 Lead the external (0~5Vdc, 4~20mA) analog signal cable to the wiring area of the SCU.

User Manual 3 Introduction to Ports

Step 2 Strip the insulation layer of the cable to expose the copper core.

Step 3 Connect the 1st analog input signal line to the SCU"V1A+, VA1–"; Connect the 2nd analog input signal line to the SCU's"V2A+, VA2–"ports.

- - End

3.7 24Vdc Power Port Wiring

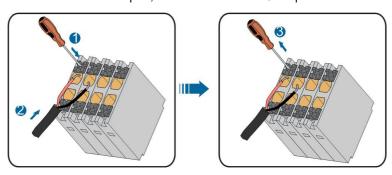
Introduction

The 24Vdc power port of the SCU has been connected to the DC side of the inverter and supplies DC power for it.

Wiring Requirements

Recommended cable specifications:0.75mm²~1.5mm².

Wiring Method


Step 1 Lead the external power cable to the wiring area of the SCU.

Step 2 Strip the cable to expose the copper core.

3 Introduction to Ports User Manual

Step 3 Connect the red wire core to "24V" port, black wire core "24V-GND" port.

--End

4 Login

4.1 Login

4.1.1 Overview

The SCU is designed with two network ports NET1 and NET2.

- Default IP address of NET1: 12.12.12.12.
- Default IP address of NFT2: 14.14.14.14.

NOTICE

IP addresses of "NET1" and "NET2" should be on different network segments. If otherwise, communication error occurs.

4.1.2 Preparation before Login

- Connect PC to NET of the SCU by using a network cable. (Notice: Do not enable the DHCP function of NET.)
- Set the IP address of the PC to be on the same network segment as that of the SCU. It is recommended to set the IP address of the PC to 12.12.12.125, and the subnet mask to 255.0.0.0.

4.1.3 Login Method

Step 1 Enter the address in the PC address bar, enter as a guest by default.

NET1 port, URL: 12.12.12.12. NET2 port, URL: 14.14.14.14.

Step 2 Click"**login**"in the upper right of the interface, and input the password pw1111 to enter the main interface.

After the initial login, please change the password in a timely manner to avoid pop-up modify password prompts.

- - End

4 Login User Manual

Modify the Password 4.2

, and select Modify Password, enter the orginnal password and new password, click [Save].

Passwords should be 8-32 character long and contain at least three of the following four character types: uppercase letters, lowercase letters, numbers, and special characters..

Setting the Language 4.3

Click

and select the desired language to switch the interface.

Logout 4.4

In order to protect the security of the account, it is recommended to log out in time after the operation is completed.

Method

, choose "**Logout**".

5 Interface Description

5.1 Homepage

No.	Description
Α	Page and menu selection bar
В	Function display area
С	Fault number
D	Alarm number
Е	Language switching options
F	Personal center

5.2 WEB Menu

Navigation Bar/Menu	Submenu	Third-Level Menu
Overview	General Information	-
Overview	Real-time Status	-
Device Monitoring	-	-
	Device List	-
Device	Firmware Update	-
	Fault Recorder	-
Smart diagnosis	String Diagnosis	-
Siliait diagnosis	Fault Diagnosis	-
	Operation Log	-
History Data	Status Records	-
Tilstory Data	Parameter log	-
	History Curve	-
	Run Information	-
	System Maintenance	-
System	Romote Maintenance	-
	Message Export	-
	System Time	-

5 Interface Description User Manual

Navigation Bar/Menu	Submenu	Third-Level Menu
	Transfer Configuration	-
	Template Management	-
	File Management	-
	Port Parameter	RS485
		EyeW485
		Ethernet
		WLAN
		Al
		DI
MPLC	-	-
About	-	-

6 Overview

6.1 Checking the General Information

Function Description

In this interface, you can view the current power generation, real-time power, the number of online devices, etc., view the operating data and cycle (day, month, year, total) power generation curve. One-click access to the interface corresponding to common functions, such as adding devices, configuring network port parameters, configuring forwarding information, upgrading/restarting the system, and quickly issuing instructions to devices.

Procedure

- Step 1 Click""Overview→General Information""to enter the interface.
- **Step 2** Click the corresponding column to view related data.
 - - End

6.2 Checking the Real-time Status

Function Description

View the event type, event name, and time of the event of the current device.

\Procedure

- **Step 1** Click""Overview→Real-time Status""to enter the interface.
- Step 2 View the event information of the current device.
 - --End

7 Device Monitoring

Function Introduction

- The real-time operation information of selected devices and the corresponding node status can be viewed on this interface.
- Set the initial parameters, operation parameters, system parameters and protection parameters of the selected device.
- Start or stop the selected device and restore the default value.

Procedure

- Step 1 Click "Device Monitoring" to enter the corresponding interface.
- Step 2 Select the device from the device list on the left.
- Step 3 Click "Realtime Values" tab to view the real-time running information of the current device.
 - Click "Node Status" tab to view the node status of the current device.
 - Click "Initial Parameter" tab to set the country and model based on local standards.

The above parameters have been configured before the product leaves the factory.

Click "Operation Parameters" tab to set the related operation parameters.

Click "System Parameters" tab to set the related system parameters.

Click "c" tab to set the related protection parameters.

For Operation Parameters, System Parameters and Protection Parameters,

Select Import to import parameters file into the system.

Select Export to export parameters file to local.

Click "Device Instruction" tab to start or stop the product or restore default values.

The start/stop command on this interface applies to the overall machine.

If the default value is restored, the historical data and parameter logs of the product are deleted.

- - End

8 Device Maintenance

8.1 Device List

Function Description

In this interface, you can add devices, modify devices and delete devices.

Prerequisite

The device model and configuration file have been obtained through Sungrow Power Supply Co., Ltd.

Procedure

- Step 1 Click""Device → Device List""to enter the interface.
- **Step 2** Click""**Add Device**""to enter the interface. On the Add Device interface, select the device type, port, device model, beginning address and quantity of device.
- Step 3 click"Save", complete the device addition.
 - - End

8.2 Firmware Update

Function Description

In this interface, you can upgrade the device.

Prerequisite

Contact SUNGROW to obtain the upgrade package.

Procedure

- Step 1 Click""Device→Firmware Update" to enter the interface.
- **Step 2** Click"**Select a Firmare File**", select the upgrade package that has been obtained, and click"**Update**".

The upgrade file must be in sgu format.

- - End

8.3 Fault Recorder

Function Description

When the fault occurs, click [Instantaneous Value Recorder Query], [RMS Recorder Query] and [Trigger fault recorder] to locate the fault and find the cause of the fault.

8 Device Maintenance User Manual

The operations involved in this interface are only performed by SUNGROW.

Step 1

--End

9 Smart Diagnosis

9.1 String Diagnosis

The string diagnosis function is used for monitoring the operating status of the combiner box with communication function and providing effective diagnoses for its faults.

Function Introduction

This function can be used to collect and analyze the voltage and current data of the upstream combiner box of the inverter, and judge whether there is a fault.

Procedure

- **Step 1** Click ""**Smart Diagnosis**→**String Diagnosis**"" to enter the corresponding interface.
- Step 2 Click "Start Diagnosis" to start diagnosing devices such as the combiner box.
- Step 3 Click "Diagnosis Results" to view the diagnosis results.
- Step 4 Click "PV Configuration" to add a new module.

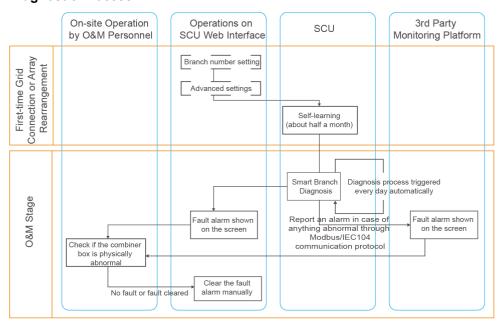
Set the module parameters according to actual conditions, and only one module can be enabled at a time.

- - End

9.2 Fault Diagnosis

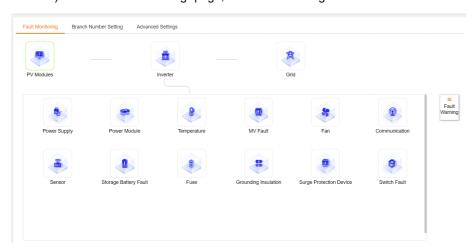
The smart branch diagnosis function is used for monitoring the operating status of the combiner box and providing effective diagnoses for its faults.

9.2.1 Function Introduction


Inverters supporting smart branch diagnosis are able to collect the output current of the combiner box (which is, the input current of the inverter). It can analyze the working status of the combiner box and strings connected to it by applying intelligent algorithms, and alarm the monitoring system in case of open circuits.

9.2.2 Access to User Interface

Log in to the SCU Web interface, and choose **Smart Diagnosis** - **Fault Diagnosis** to go to the page for fault diagnosis.


9 Smart Diagnosis User Manual

9.2.3 Diagnostic Process

9.2.4 Fault Monitoring

You can check the working status of the PV modules (the combiner box and strings connected to it) on the "Fault Monitoring" page, as shown in the figure below.

The color codes for branch status are listed in the table below.

Color and Icon	Status	
Green	Normal	
	•	

User Manual 9 Smart Diagnosis

Orange	•	Branch abnormal (string connected to the combiner box is offline)
Grey		Branch offline (the combiner box is offline)

Normal Status

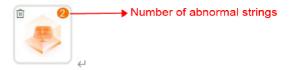
· PV Module Status

You can see from the icon of "PV Module" in case a fault alarm is reported from smart branch diagnosis. This icon normally shows as:

PV Modules

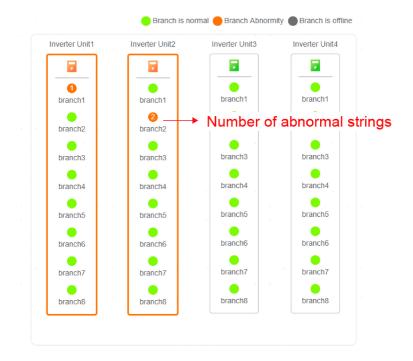
Branch Map

Click on the center of the "PV Module" icon, the below branch map will pop up. In normal status, the branch icon is green and the inverter unit's frame is grey.


9 Smart Diagnosis User Manual

Branch Abnormal

In case of a branch abnormal open-circuit alarm, which is, some string connected to the combiner box is offline, you can see on the page that:


· PV Module Status

The number in the upper right corner of the "PV Module" icon represents the number of inverter units in abnormal status. The trash bin icon in the upper left corner is used to clear the alarms. Alarms from smart branch diagnosis need to be cleared manually, or they will remain there.

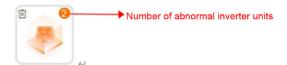
· Branch Map

Click on the center of the "PV Module" icon, the below branch map will pop up. The branch icon turns orange, and the number in the icon represents the number of strings in abnormal status. The inverter unit's frame also shows orange.

User Manual 9 Smart Diagnosis

If the icon of a branch in an inverter unit turns orange, please find this branch on the site, and proceed as follows to perform troubleshooting and clear the alarm:

1 Check if any fuse inside the combiner box is blown with a multimeter. If so, please replace the fuse.


- 2 Check if PV modules in the branch are covered by dust or weeds, etc. If so, clean them up in time.
- 3 Check if PV modules in the branch are damaged. If so, remove the damaged PV modules, or replace them with new ones.
- 4 After finishing troubleshooting, go to SCU Web interface and choose **Smart Diagnosis Fault Diagnosis Fault Monitoring**. Click on the trash bin icon in the upper left corner of the "PV module" icon to manually clear the alarm message.

Branch Offline

In case of a branch offline alarm, which is, the combiner box is offline, you can see on the page that:

PV Module Status

The number in the upper right corner of the "PV Module" icon represents the number of inverter units in abnormal status. The trash bin icon in the upper left corner is used to clear the alarms. Alarms from smart branch diagnosis need to be cleared manually, or they will remain there.

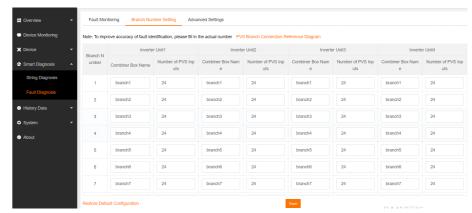
· Branch Map

Click on the center of the "PV Module" icon, the below branch map will pop up. The branch icon turns grey. The inverter unit's frame shows orange.

9 Smart Diagnosis User Manual

If the icon of a branch in an inverter unit turns orange, please find this branch on the site, and proceed as follows to perform troubleshooting and clear the alarm:

1 Check if the circuit breaker inside the combiner box has tripped. If so, reset the circuit breaker.

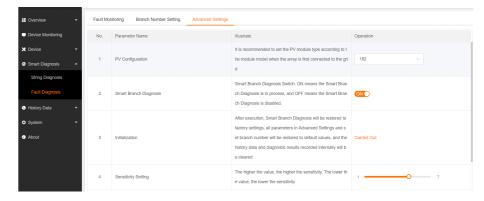


- 2 Check if fuses inside the combiner box are all blown with a multimeter. If so, replace all the blown fuses with new ones.
- 3 After finishing troubleshooting, go to SCU Web interface and choose Smart Diagnosis - Fault Diagnosis - Fault Monitoring. Click on the trash bin icon in the upper left corner of the "PV module" icon to manually clear the alarm message.

9.2.5 Branch Number Setting

At the first time of grid connection, or in the event of array rearrangement, you can set parameters for each combiner box in each inverter unit on the "Branch Number Setting" page. The page is shown below.

User Manual 9 Smart Diagnosis



Parameter	Range	Description
Combiner Box Name	1 - 64 bytes (which is, up to	User-definable. Default
	32 Chinese characters or	name: branch1, branch2,
	64 English letters/numbers)	branch3
Number of PVS Inputs	1 - 24; 24 by default	Indicate the number of in-
		puts connected to the
		combiner box. It is sug-
		gested to set this parameter
		according to the actual sit-
		uation before the first grid
		connection.

9.2.6 Advanced Settings

You can set the key parameters of the smart branch diagnosis function on the "Advanced Settings" page, such as "PV Configuration", "Smart Branch Diagnosis", "Initialization", "Sensitivity Setting", "Alert Information Upload", and "Restore Default Configuration".

Default values are available in the system. At the first time of grid connection or in the event of array rearrangement, you may adjust the parameter settings according to the actual situation. The page is shown below.

9 Smart Diagnosis User Manual

Parameter descriptions and suggestions on setting are listed in the table below. For other parameters, please refer to the information shown on the page.

Parame-	Description	Range	Suggestions
ter			
PV Con-	Type of PV	166, 182, or 210; 182	It is suggested to set this pa-
figura-	modules	by default.	rameter in line with the actual
tion			model of PV modules in the
			first time of grid connection.
Sensitiv-	The greater the val-	1 - 7. For instance,	For plants where the
ity	ue is, the higher the	when the sensitivity is	combiner box output current
Setting	sensitivity gets.	set to "1", a fault should	is stable, you can set the
		occur every day for 30	sensitivity to a high level.
		days in a row to trigger	For plants where the output
		an alarm. The correla-	current of the combiner box
		tion between the sensi-	is prone to fluctuation due to
		tivity setting and the	weather or other factors, you
		time required to trigger	can set the sensitivity to a
		a fault alarm is shown	low level, so as to avoid false
		in the table below.	alarms.

table 9-1 Correlation between the sensitivity setting and the time required to trigger a fault alarm

Sensitivity	Alarm triggered if a fault occurs for N days in
	a row
1	30
2	20
3	15
4	10
5	5
6	3
7	1

10 History Data

10.1 Operation Log

Function Description

In this interface, you can view the operation log, such as login, logout, system restart and other operations and the corresponding time, which is convenient for later traceability.

Procedure

Step 1 Click""History Data→Operation Log""to enter the interface.

Step 2 Click to export the log.

- - End

10.2 Status Records

Function Introduction

The history fault, alarm, and prompt information can be viewed on this interface.

Procedure

- Step 1 Click ""History Data→Status History" to enter the corresponding interface.
- Step 2 Select the start and end time and all historical status is displayed by default.

To view the historical status of a certain type, check the corresponding status column. For example, check fault to view the historical fault information of a corresponding time period.

Step 3 Click in the upper right corner of the interface to export the historical running information.

--End

10.3 Parameter log

Function Description

In this interface, you can view the completed parameter setting records of the current account.

Procedure

- Step 1 Click""History Data→Parameter log""to enter the interface.
- **Step 2** View the corresponding parameter log information.

10 History Data User Manual

Step 3 Click to export the log of parameter settings.

--End

10.4 History Curve

Function Introduction

Historical information such as the power of the overall machine, each inverter unit and SCU can be viewed on this interface.

Procedure

- **Step 1** Click ""**History Data**→**History Curve**"" to enter the corresponding interface.
- **Step 2** Select the start and end time to view the measuring point records within the specified time period.
- Step 3 Click in the upper right corner to switch between table or curve display.

Click in the upper right corner of the interface to export the measuring point log in a table.

--End

11 System

11.1 Run Information

Function Introduction

The communication address, input and output node status, and forwarding configuration information can be viewed on this interface.

Procedure

Step 1 Click ""System→Run Information" to enter the corresponding interface.

Step 2 Select an option as needed:

- Click "General Information" to view the running information such as the communication address and CPU utilization.
- Click "IO Information" to view the status of each input and output node.
- Click "Forward Information" to view the name and current value of the forwarded configuration.
- - End

11.2 System Maintenance

Function Introduction

Perform system upgrade, log export, rebooting, and one-click migration on this interface.

Procedure

Step 1 Click ""**System**→**System Maintenance**"" to enter the corresponding interface.

Step 2 Select an option as needed:

- Click "System Upgrade" and select an upgrade file to upgrade the system.
- Click "Log Export" to export the required log.
- Click "Rebooting" and select [Confirm] in the Warning pop-up box to restart the system.
- Click "One-click Migration" and select [Export] or [Import] as needed in the Oneclick Migration pop-up box.

-Select [Import] to import files into this system.

-Select [Export] to export the file to local.

- - End

11 System User Manual

11.3 Remote Maintenance

Function Introduction

Remote maintenance can be enabled or disabled on this interface for specific conditions.

Procedure

Step 1 Click ""**System**→**Remote Maintenance**"" to enter the corresponding interface.

Step 2 Select a menu as needed:

If the remote maintenance is set to 【Disable】, the device cannot be accessed through the public network.

If the remote maintenance is set to **[** Enable**]**, the device can be accessed through the public network after selecting the server site where the product is used.

Step 3 Click "Save" to finish setting the remote maintenance switch.

- - End

11.4 Message Export

Function Introduction

Different types of port message data can be exported on this interface.

Procedure

Step 1 Click ""**System**→**Message Export**"" to enter the corresponding interface.

Step 2 Select a menu as needed:

Item	Description
	Serial port
Type	Network
Туре	• CAN
	Multiple choices
Port	COM1 ~ COM3, COM6 ~ COM9, multiple choices
Duration (min)	Range 1 ~ 10

Step 3 Click "**Start**". The parameter is successfully set and the countdown starts based on the set duration.

Step 4 Click "Export" to export the message of the selected ports.

After finishing exporting the message, please export the file before switching the port.

- - End

User Manual 11 System

11.5 System Time

Function Introduction

Here you can choose from different time source options.

Procedure

Step 1 Click""System→System Time"".

Step 2 Select based on your actual needs. A total of 6 time source options are available.

 User Define Use PC Time: After the check box is selected time can be synchronized with the intelligent gateway time. Time Zone: Select the time zone where 	t communication
Time Zone: Select the time zone where	the intelligent
communication gateway is installed.	
 Date: Set the system date of the intelligent gateway in the format of "YYYY-MM-DD", that is, 	
 Time: Set the system time of the intelligent gateway in the format of "HH: MM: SS", that is second. 	
 Time Zone: Select the time zone where communication gateway is installed. 	e the intelligent
 Server: NTP server address. 	
 Time Interval (Min): Time calibration will be pe specific time intervals. 	erformed once at
IEC104 -	
iSolarColud -	
MODBUS -	
B Code Time Interval (Min): Time calibration will be perspecific time intervals.	erformed once at

Only one clock source is effective at a time.

Step 3 Click [Save], and the setting is finished.

- - End

11.6 Transfer Configuration

In this interface, the collected device data can be forwarded to the remote monitoring system or the local monitoring system.

11 System User Manual

11.6.1 IEC104

Function Introduction

Transmit the collected data to the monitoring system through IEC60870-5-104 protocol stack on this interface.

Procedure

Step 1 Click ""System→Transfer Configuration→IEC104"" to enter the corresponding interface.

Step 2 Click of the local port to configure the general parameters.

Item	Description		
ASDU public address	Enable/Disable		
configuration			
Remote signaling measur-	Single/Multiple		
ing point type			
Uploading interval of re-	Range from 100 to 1000.		
mote signaling packet			
Remote signaling time	Range:		
	• If it is set to "SOE", the remote signaling message contains a time tag.		
Remote signaling time mark	• If it is set to "COS", the remote signaling message does not contain a time tag.		
	• If it is set to "SOE, COS", the intelligent communication gateway will not forward the remote signaling message.		
Upload with a change	The system will automatically upload the changes of the intelligent communication gateway parameters.		

Step 3 Click to export IEC104 setting information of the corresponding port.

Click 【Generate Point Table】 to generate IEC104 point table information.

Click **[**Export Point Table**]** to export IEC104 point table information.

Click [White List Setting] to set the peer IP.

NOTICE

If the white list is set to "0.0.0.0", the background device with any legal IP address can access the intelligent communication gateway.

If the background IP is set to a specific address, the intelligent communication gateway can only be accessed by this address.

- - End

Follow-up Operations

User Manual 11 System

After finishing setting the parameters, restart the device for the configuration to take effect.

11.6.2 MODBUS

Function Introduction

Transmit the collected data to the monitoring system through MODBUS-RTU protocol on this interface.

Procedure

Step 1 Click ""System→Transfer Configuration→MODBUS" to enter the corresponding interface.

Step 2 Click **SERVER** tab to view the white list information of each port.

Click [White List Setting] to modify it if necessary.

If the white list is set to "0.0.0.0", the background device with any legal IP address can access the intelligent communication gateway.

If the background IP is set to a specific address, the intelligent communication gateway can only be accessed by this address.

Step 3 Click **RTU** tab to view the delay time of the serial port.

Step 4 Tap [Save] after configuration.

- - End

Follow-up Operations

After finishing setting the parameters, restart the device for the configuration to take effect.

11.6.3 GOOSE

Function Introduction

Select whether to enable the Goose function on this interface.

Procedure

Step 1 Click ""System→Transfer Configuration→GOOSE"" to enter the corresponding interface.

Step 2 Select to [Disable] or [enable] this function.

- If it is set to 【Disable】, GOOSE port is not available.
- If it is set to 【Enable】, GOOSE port is available.
 - Select Configuration File Import to import GOOSE files into the system.
 - Select Configuration File Export to export GOOSE files to local.

- - End

Follow-up Operations

After finishing setting the parameters, restart the device for the configuration to take effect.

User Manual 11 System

11.7 Template Management

Function Description

It is convenient to save, transfer and apply a configuration combination to realize the same configuration operation on multiple devices.

This operation is only performed by SUNGROW.

11.8 File Management

Function Introduction

The point table files can be imported or exported on this interface.

Step 1 Click ""**System**→**File Management**"" to enter the corresponding interface.

to export the point table file.

to import the point table file.

--End

11.9 Port Parameter

11.9.1 RS485

Function Introduction

Set the serial port parameters of the intelligent communication gateway, such as parameters of the COM port, including port function, baud rate, check bit and stop bit, etc.

Procedure

Step 1 Click "SystemPort Parameter RS485" to enter the corresponding interface.

Step 2 Set the parameters as needed.

The intelligent communication gateway is designed with 7 COM ports, which are numbered COM1 to COM3 and COM6 to COM9.

- The port function must be set to "Collection" if the serial port of the intelligent communication gateway is connected to a PV device.
- The total number of serial ports configured as "Forwarding background" should not exceed 2. COM3 is recommended as forwarding serial ports.

- - End

Port Function Modification

Switch the serial port function from "Collection" to "Forwarding background" as follows.

User Manual 11 System

1 Click "System→Port Parameters→RS485", select the port to switch, click [Operation] to switch the port function from Collection to Forwarding background, and click [Save].

If a device is connected to the serial port, click "Device Maintenance→Device List" to delete the device.

2 Click "System→Transfer Configuration→MOBUS→RTU" after switching. Select the

COM port that has been switched to forwarding background and click

3 If it prompts that the operation is successful, connect the serial port cable to the selected COM port for communication.

Set the baud rate, check bit, and stop bit to the same values of those on the "System—Port Parameters—RS485" interface when establishing the communication.

4 When switching serial ports in the same forwarding channel, stop the communication device from sending data first, then select the serial port to switch for saving data, and then connect the communication device to the switched COM port for sending and receiving data.

Follow-up Operations

After finishing setting the parameters, restart the device for the configuration to take effect.

11.9.2 EyeW485

Function Introduction

Configure EyeW485 on this interface.

Preparation

The EyeW485 can only be configured after the wireless 485 is enabled.

- 1 Click "SystemPort Parameter RS485" to enter the corresponding interface.
- 2 Select the serial port connected with the W485 master node (select it according to the actual wiring), enable EyeW485 connection, and click 【Save】. It would prompt that the operation is successful.

NOTICE

The baud rate will be automatically modified to 115200. Please do not modify it, otherwise, the transmission efficiency may be affected.

EyeW485 cannot be enabled if forwarding background is selected.

W485 can be enabled for only one port at a time.

11 System User Manual

11.9.2.1 EyeW485-H Configuration

Function Introduction

Configure EyeW485-H on this interface.

Procedure

Step 1 Click "SystemPort Parameter EyeW485" to enter the corresponding interface.

Step 2 Click "EyeW485-H" to view the frequency point and array number of the master node.

- Scan and set 【Frequency】 as needed:
- Click the drop-down list of 【Array】 to select the array number according to actual needs.
- Set the power, which ranges from 10 to 20, according to actual needs.

Step 3 After the setting is completed, click [Settings] or [Configuration Synchronization] for the newly set power to take effect.

- - End

Follow-up Operations

After finishing setting the parameters, restart the device for the configuration to take effect.

11.9.2.2 EyeW485 Configuration

Function Introduction

The slave node will be refreshed if the EyeW485 interface is clicked open for the first time. The slave node information can also be refreshed by clicking the refresh button.

- Step 1 Click "SystemPort Parameter EyeW485" to enter the corresponding interface.
- Step 2 Click "EyeW485" and refresh the slave node information.
- **Step 3** After the slave node information is refreshed and displayed, click **[**Operation**]** to set the specified slave node.

- - End

Follow-up Operations

After finishing setting the parameters, restart the device for the configuration to take effect.

11.9.2.3 Operation Instructions

Function Introduction

Restart, upgrade, and switch between the EyeW485-H and EyeW485, as well as restore factory settings of the EyeW485-H and EyeW485 on this interface.

Procedure

Step 1 Click "SystemPort Parameter EyeW485" to enter the corresponding interface.

User Manual 11 System

Step 2 Click "Operation Instructions".

• Select [One-touch Switch], and the master and slave nodes will start networking using the optimal frequency points among the randomly allocated ones.

- Select [System Update EyeW485-H only] to restart the master node.
- Select [Reset All Settings] to restore the factory settings of the master node.
- Select 【Rebooting EyeW485-H, EyeW485】 to restart the master and slave nodes.
- Select [Log Export], and interface will be locked and start exporting the log.
- Select 【System Upgrade EyeW485-H only】, select the obtained local upgrade package, and click 【Upgrade】. It will go to the homepage that has been refreshed after the successful upgrade.

- - End

Follow-up Operations

After finishing setting the parameters, restart the device for the configuration to take effect.

11.9.3 Ethernet

Function Description

This function is used for the network port parameters of the SCU.

Procedure

Step 1 Click""**System**→**Port Parameter**→**Ethernet**""to enter the interface.

Step 2 Click

to save the settings.

- - End

The default IP address of the NET1 port is12.12.12.12.

The default IP address of the NET2 port is 14.14.14.14.

11.9.4 WLAN

Function Introduction

The WLAN parameters of the intelligent communication gateway can be configured on this interface.

Procedure

Step 1 Click "SystemPort ParameterWLAN" to enter the corresponding interface.

11 System User Manual

Step 2 Set the parameters as needed:

Item			Description
AP	hotspot	enable	【Disable】or 【Enable】the hotspot.
switch			
SSID			Set the hotspot name.
Secur	rity		Set to [None] or [WAP2].
Passv	word		8-32 characters.

WLAN connection shall be established again if the WLAN password is modified.

--End

11.9.5 AI

Function Introduction

Port parameters of the dry contact AI can be set on this interface.

Procedure

Step 1 Click "SystemPort ParameterAI" to enter the corresponding interface

Step 2 Set the parameters as needed.

Step 3 Click

, and the setting is finished.

- - End

11.9.6 DI

Function Introduction

Port parameters of the dry contact DI can be set on this interface.

Procedure

Step 1 Click "SystemPort ParameterDI" to enter the corresponding interface

Step 2 Set the parameters as needed.

Step 3 Click

, and the setting is finished.

- - End

12 About

View the device serial number and firmware version information of the SCU through this interface.

13 Appendix

13.1 Copyright

All rights reserved by Sungrow Power Supply Co., Ltd. and no unit or individual may add, delete, adapt, copy, translate, reproduce or rewrite part or all of the contents of this manual in any way without the prior written authorization of SUNGROW.

13.2 Contact Information

Should you have any technical question about this software, please contact us:

HQ Tel: 0551 - 6532 7878 / 0551 - 6532 7877

For more contact information, see https://www.sungrowpower.com/headquarter.html.